Arkiver for kategorien 'kronologi'

Atomic Clock og Network Time Server

Søndag, januar 25th, 2009

Det atomur er kulminationen på menneskehedens besættelse af at fortælle præcis tid. Inden atomklokken og nanosekundens nøjagtighed de anvendte tidsskalaer var baseret på de himmellegemer.

Men takket være udviklingen af ​​atomuret er det nu blevet indset, at selv jorden i dens rotation ikke er lige så præcis en tidsmåling som den atomur da det taber eller får en brøkdel af et sekund hver dag.

På grund af behovet for at have en tidsskala baseret noget på jordens rotation (astronomi og landbrug er to grunde) en tidsskala, der holdes af atomur, men justeres for enhver formindskelse (eller acceleration) i Jordens spin. Denne tidsskala er kendt som UTC (Koordineret Universal Time) som ansat over hele kloden og sikrer handel og handel udnytte det samme.

Brug af computernetværk netværk tidsservere at synkronisere til UTC-tid. Mange mennesker henviser til disse tidsserverenheder som atomur, men det er unøjagtigt. Atomsklokke er ekstremt dyre og meget følsomme udstyrstyper og findes kun normalt i universiteter eller nationale fysiklaboratorier.

Heldigvis synes nationale fysik laboratorier NIST (National Institute for Standards and Time - USA) og NPL (National Physical Laboratory - UK) udsendes tidssignalet fra deres atomur. Alternativt er GPS-netværket en anden god kilde til præcis tid, da hver GPS-satellit har sit eget atomur.

Det netværkstidsserver modtager tiden fra et atomur og distribuerer det ved hjælp af en protokol som f.eks NTP (Network Time Protocol), der sikrer, at computernetværket er synkroniseret til samme tid.

Fordi netværk tidsservere styres af atomurerne, de kan holde utroligt præcis tid; ikke taber et sekund i hundredvis, hvis ikke tusindvis af år. Dette sikrer, at computernetværket er både sikkert og uacceptabelt for timingfejl, da alle maskiner vil have nøjagtig samme tid.

A History of Atomic Clocks

Fredag, januar 23rd, 2009

Det atomur er kulminationen af ​​menneskehedens evne til at holde tid, der har spændt flere årtusinder. Mennesker har altid været optaget af at holde øje med tiden lige siden den tidlige mand bemærkede de himmelske legemes regelmæssighed.

Solen, månen, stjernerne og planeterne blev snart grundlaget for ude tidsplaner med perioder som år, måneder, dage og timer baseret udelukkende på reguleringen af ​​Jordens rotation.

Dette har fungeret i tusindvis af år som en pålidelig vejledning til, hvor meget tid der er gået, men i løbet af de sidste århundreder har mennesker udviklet sig til at finde endnu mere pålidelige metoder til at holde øje med tiden. Mens sol og himmellegemer var en affektiv måde, solede solbriller ikke på overskyede dage, og da dag og nat er ændret i løbet af året, kan det kun med rimelighed påberåbes, at middagstidspunktet (når solen er på sit højeste).

Den første foray i en præcis timepiece, der ikke var afhængig af himmellegemer og ikke var en simpel tid (som et lys taper eller vand ur) men faktisk fortalt tid over en længere periode var det mekaniske ur.

Disse første enheder, der dateres så langt tilbage som det tolvte århundrede, var råmekanismer ved hjælp af en rippe og foliot escapement (et gear og en løftestang) til at styre uret. Efter et par århundreder og et utal af design tog det mekaniske ur sit næste skridt fremad med pendulet. Pendulet gav deres første sande nøjagtighed, da det blev kontrolleret med mere præcision klokken af ​​uret.

Men det var først i det tyvende århundrede, hvor ure gik ind i den elektroniske tidsalder, blev de virkelig korrekte. Det digitale og elektroniske ur havde sine flåter styret ved at anvende oscillationen af ​​en kvartskrystal (dens ændrede energitilstand, når en strøm er baseret på), hvilket viste sig så nøjagtigt, at sjældent en gang om ugen gik tabt.

Udviklingen af atomure i 1950'erne anvendes oscillationen af ​​et enkelt atom, der genererer over 9 milliard ticks et sekund og kan bevare præcis tid i millioner af år uden at tabe et sekund. Disse ure udgør nu grundlaget for vores tidsplaner med hele verden synkroniseret til dem ved hjælp af NTP-servere, hvilket sikrer fuldstændig præcis og pålidelig tid.

NTP Server 5 skridt til netværkssynkronisering

Onsdag, januar 21st, 2009

Synkronisering af et netværk betragtes ofte som hovedpine hos netværksadministratorer, der frygter, at det bliver forkert, kan føre til katastrofale resultater, og mens der ikke er nogen benægtelse, at manglende synkronisering kan forårsage uforudsete problemer, især med tidsfølsomme transaktioner og sikkerhed, er perfekt synkronisering simpel, hvis disse trin følges:

1. Brug en dedikeret NTP-server. Det NTP-server er en enhed, der modtager en enkeltkilde, og distribuerer den mellem et netværk af computere ved hjælp af protokollen NTP (Network Time Protocol) en af ​​de ældste internetbaserede protokoller og langt den mest anvendte tidssynkroniseringssoftware. NTP pakker ofte med moderne operativsystemer som Windows eller Linux, selvom der ikke er nogen erstatning for en dedikeret NTP-enhed.

2. Brug altid a UTC tidskilde (Koordineret universeltid). UTC er baseret på GMT (Greenwich Meantime) og International Atomic Time (TAI) og er meget præcis. UTC bruges af computernetværk over hele verden, der sikrer, at handel og handel alle bruger samme tidsskala.

3. Brug et sikkert, præcist tidssignal. Mens tidssignaler er tilgængelige over hele internettet, er de uforudsigelige i deres nøjagtighed, og mens nogle kan tilbyde anstændigt nok præcision, er en internet-tidsserver uden for en firewall, som hvis den er åben for at modtage en tidskode, vil forårsage svagheder i netværkssikkerheden. Enten GPS (globalt positionssystem) eller et dedikeret radiosignal som dem, der transmitteres af nationale fysiklaboratorier (f.eks MSF - UK, wwvb - USA, DCF -Germany) tilbyder sikre og pålidelige metoder til at modtage et sikkert og præcist tidssignal.

4. Organiser et netværk i stratum, niveauer. Strata sikrer, at NTP-server er ikke oversvømmet med tidsforespørgsler, og at netværksbåndbredden ikke bliver overbelastet. Et stratum træ er organiseret af et par udvalgte maskiner, der er stratum 2 enheder ved at de modtager et tidssignal fra NTP-server (stratum 1-enhed), der igen fordeler tiden til andre enheder (stratum 3) og så videre.

5. Sørg for, at alle maskiner bruger UTC og NTP-server træ. En fælles fejl i tidssynkronisering er ikke at sikre, at alle maskiner er synkroniseret ordentligt, kun en maskine, der kører forkert tid, kan have uforudsete konsekvenser.

NTP Server og Forståelse Timescales

Mandag, januar 19th, 2009

Der er flere gange brugt over hele verden. Mest NTP-servere og andre netværk tidsservere brug UTC som en base kilde dog er der andre:

Når vi bliver spurgt, er det meget usandsynligt, at vi vil reagere med 'for hvilken tidsplan', men der er flere tidsskalaer brugt over hele kloden, og hver er baseret på forskellige metoder til at holde styr på tiden.
GMT

Greenwich Mean Time (GMT) er den lokale tid på Greenwich-meridianen baseret på den hypotetiske gennemsnitlige sol. Da jordens kredsløb er elliptisk, og dets akse er vippet, forekommer solens aktuelle position mod stjernernes baggrund lidt foran eller bag den forventede position. Den akkumulerede timingfejl varierer jævnligt periodisk i løbet af året med op til 14 minutter langsomt i februar til 16 minutter hurtigt i november. Brugen af ​​en hypotetisk middel sol fjerner denne effekt. Før 1925-astronomer og navigatører målt GMT fra middag til middag, begyndte dagen 12 timer senere end i civil brug, som også almindeligvis blev omtalt som GMT. For at undgå forvirring aftalt astronomer i 1925 at ændre referencepunktet fra middag til midnat, og et par år senere vedtog begrebet Universal Time (UT) for den "nye" GMT. GMT forbliver retsgrundlaget for borgerretten for Det Forenede Kongerige.

UT

Universal Time (UT) er gennemsnitlig soltid på Greenwich-meridianen med 0 h UT ved midnat, og siden 1925 har erstattet GMT til videnskabelige formål. I midten af ​​1950'erne havde astronomer meget beviser for udsving i jordens rotation og besluttede at opdele UT i tre versioner. Tid afledt direkte fra observationer kaldes UT0, der anvendes korrektioner for bevægelser af jordens akse, eller polar bevægelse, giver UT1, og fjernelse af periodiske sæsonvariationer genererer UT2. Forskellene mellem UT0 og UT1 er af størrelsesordenen tusindedele af et sekund. I dag er kun UT1 stadig meget udbredt, da det giver en måling af Jordens rotationsorientering i rummet.


Verdens tid standard
(UTC):

Selvom TAI giver en kontinuerlig, ensartet og præcis tidsskala til videnskabelige referenceformål, er det ikke praktisk til daglig brug, fordi det ikke er i takt med Jordens rotationshastighed. En tidsskala, der svarer til veksling af dag og nat, er meget mere nyttig, og siden 1972 distribuerer alle udsendeltidstjenester tidsskalaer baseret på koordineret universeltid (UTC). UTC er en atomskala, der holdes i overensstemmelse med Universal Time. Leap sekunder er lejlighedsvis

Information høflighed af National Physical Laboratory Storbritannien.

Spring anden fejl og konfiguration

Søndag, januar 18th, 2009

Bortset fra de sædvanlige festligheder og nybegynder bragte slutningen af ​​december med tilføjelsen af ​​en anden Leap Second til UTC tid (koordineret universeltid).

UTC er den globale tidsskala, der bruges af computernetværk over hele verden, og sikrer, at alle holder samme tid. Leap Seconds tilføjes til UTC af International Earth Rotation Service (IERS) som reaktion på forsinkelsen af ​​jordens rotation på grund af tidevandsstyrker og andre anomalier. Hvis du ikke lægger et spring i gang, ville det betyde, at UTC ville gå væk fra GMT (Greenwich Meantime) - ofte kaldet UT1. GMT er baseret på de himmelske legemes position, så om morgenen er solen på sit højeste over Greenwich Meridian.

Hvis UTC og GMT skulle glide adskilt, ville det gøre livet svært for mennesker som astronomer og landmænd, og i sidste ende ville nat og dag svinge (om end i tusind år eller deromkring).

Normalt springes sekunder til sidste minut i december 31, men lejlighedsvis, hvis mere end en er påkrævet om et år, tilføjes det om sommeren.

Spræng sekunder er imidlertid kontroversielle og kan også forårsage problemer, hvis udstyr ikke er designet med spild sekunder i tankerne. For eksempel blev det seneste spring sekund tilføjet på 31 december, og det forårsagede, at database gigantiske Oracle's Cluster Ready Service skulle mislykkes. Det resulterede i, at systemet automatisk genstartede sig på nytår.

Leap Seconds kan også forårsage problemer, hvis netværk synkroniseres ved hjælp af internetkilder eller enheder, der kræver manuel indgriben. Heldigvis mest dedikerede NTP-servere er designet med Leap Seconds i tankerne. Disse enheder kræver ingen indgriben og vil automatisk justere hele netværket til den korrekte tid, når der er et spring sekund.

En dedikeret NTP-server er ikke kun selvjusterende, der kræver ingen manuel indgriben, men også de er yderst nøjagtige at være stratum 1-servere (de fleste internetkilder er stratum 2-enheder med andre ord enheder, der modtager tidssignaler fra stratum 1-enheder og genudgiver det), men de er også meget sikre, at eksterne enheder ikke behøver at være bag brandwaren.

NTP Server Tidssynkronisering til Dummies

Onsdag, januar 14th, 2009

tidssynkronisering er yderst vigtigt for moderne computernetværk. I nogle brancher er tidssynkronisering helt afgørende, især når du beskæftiger dig med teknologier som flyvekontrol eller sejlads, hvor hundredvis af liv kan blive truet på grund af mangel på præcis tid.

Selv i den finansielle verden er korrekt tidssynkronisering afgørende, da millioner kan tilføjes eller tørres af aktiekurser hvert sekund. Af denne grund overholder hele verden en global tidsplan kendt som koordineret universeltid (UTC). Men at holde fast ved UTC og holde UTC præcis er to forskellige ting.

De fleste computer ure er simple oscillatorer, der langsomt vil drive enten hurtigere eller langsommere. Desværre betyder det, at uanset hvor præcis de er sat på mandag, vil de være drevet af fredag. Denne drift kan kun være en brøkdel af et sekund, men det vil snart ikke vare lang tid for den oprindelige UTC-tid at være over et sekund ud.

I mange brancher kan det ikke betyde et spørgsmål om liv og død af tabet af millioner i aktier og aktier, men manglende tidssynkronisering kan have uforudsete konsekvenser som f.eks. At lade et selskab være mindre beskyttet mod bedrageri. Modtagelse og opbevaring af UTC-tid er dog ret lige fremad.

Dedikeret netværk tidsservere er tilgængelige, der bruger protokollen NTP (Network Time Protocol) for løbende at kontrollere tidspunktet for et netværk mod en kilde til UTC-tid. Disse enheder kaldes ofte som en NTP-server, tidsserver eller netværkstidsserver. Det NTP-server justerer konstant alle enheder på et netværk for at sikre, at maskinerne ikke kører fra UTC.

UTC er tilgængelig fra flere kilder, herunder GPS-netværket. Dette er en ideel kilde til UTC-tid, da den er sikker, pålidelig og tilgængelig overalt på planeten. UTC er også tilgængelig via specialiserede nationale radiosender, der sendes fra nationale fysik laboratorier selvom de ikke er tilgængelige overalt.

NTP Server History Acquiring Precision

Mandag, januar 12th, 2009

Når vi tager et kig på vores ure eller kontoruret, tager vi ofte for givet, at den tid, vi får, er korrekt. Vi kan se, om vores ure er ti minutter hurtigt eller langsomt, men vær opmærksom på, om de er et sekund eller to ud.

Men i tusindvis af år har menneskeheden stræbt efter at blive stadig mere og mere præcise ure fordelene deraf er rigelige i dag i vores alder af satellitnavigation, NTP-servere, internettet og global kommunikation.

For at forstå, hvordan præcis tid kan måles, er det først vigtigt at forstå begrebet tid selv. Tid som den er blevet målt på Jorden i årtusinder er et andet begreb til tiden selv, som som Einstein informerede os, var en del af selve universets stof i det, han beskrev som en fire-dimensionel rumtid.

Alligevel har vi historisk målt tidsbaseret ikke på tidenes forløb, men rotationen af ​​vores planet i forhold til Solen og Månen. En dag er opdelt i 24 lige dele (timer), der hver er opdelt i 60 minutter, og minut er opdelt i 60 sekunder.

Men det er nu blevet indset, at målingstiden på denne måde ikke kan betragtes som nøjagtig, da Jordens rotation varierer fra dag til dag. Alle former for variabel som tidevandsstyrker, orkaner, solvind og endog mængden af ​​sne i polerne påvirker jordens rotationshastighed. Faktisk, da dinosaurerne først begyndte at roaming jorden, ville længden af ​​en dag, som vi måler den nu, kun have været 22 timer.

Vi baserer nu vores tidsopgave på overgangen af ​​atomer ved hjælp af atomure med et sekund baseret på 9,192,631,770 perioder af strålingen udsendt af hyperfineovergangen af ​​et unioniseret cæsiumatom i jordtilstanden. Selvom det kan lyde kompliceret, er det bare en atomkryds, der aldrig ændrer sig og derfor kan give en meget præcis reference til at basere vores tid på.

Atomiske ure bruger denne atomresonans og kan holde tid, der er så præcis, at et sekund ikke går tabt i endda en milliard år. Moderne teknologier udnytter alle disse præcisioner, hvilket gør det muligt for mange af de kommunikation og globale handel, vi nyder godt af i dag, med udnyttelsen af ​​satellitnavigation, NTP-servere og flyvekontrol ændrer den måde, vi lever vores liv på.

NTP Server Configuration til Windows og Linux

Søndag, januar 4th, 2009

Network Time Protocol er udviklet for at holde computere synkroniseret. Alle computere er tilbøjelige til at drive og præcis timing er afgørende for mange kritiske applikationer.

En version af NTP er installeret på de fleste versioner af Windows (selv om en fjernet version kaldes SNTP-Forenklet NTP-er i ældre versioner) og Linux, men er gratis at downloade fra NTP.org.

Når du synkroniserer et netværk, er det bedst at bruge en dedikeret NTP-server der modtager en timing kilde fra en atomur enten via specialiserede radiosender eller GPS-netværk. Der er dog mange internettidsreferencer til rådighed, nogle mere pålidelige end andre, selvom det skal bemærkes, at internetbaserede tidskilder ikke kan godkendes af NTP, hvilket gør computeren udsat for trusler.

NTP er hierarkisk og arrangeret i stratum. Stratum 0 er timing reference, mens stratum 1 er en server forbundet til en stratum 0 timing kilde og et lag 2 er en computer (eller en enhed), der er knyttet til en stratum 1 server.

Grundlæggende konfiguration af NTP er udført ved hjælp af filen /etc/ntp.conf, du skal redigere den og placere IP-adressen til stratum 1 og stratum 2-servere. Her er et eksempel på en grundlæggende ntp.conf-fil:

server xxx.yyy.zzz.aaa foretrækker (tidsserveradresse som time.windows.com)

123.123.1.0 server

server 122.123.1.0 stratum 3

Driftfile / etc / ntp / drift

Den mest grundlæggende ntp.conf-fil vil liste 2-servere, en, som den ønsker at synkronisere og en IP-adresse for sig selv. Det er god husholdning at have mere end en server til reference, hvis man går ned.

En server med mærket 'foretrukne' bruges til en betroet kilde, der sikrer, at NTP altid bruger den server, når det er muligt. IP-adressen vil blive brugt i tilfælde af problemer, når NTP vil synkronisere med sig selv. Driftfilen er, hvor NTP bygger en oversigt over systemurets drifthastighed og justerer automatisk for den.

NTP vil justere dit system tid, men kun langsomt. NTP afventer mindst ti informationspakker, inden du har tillid til tidskilden. For at teste NTP ændres simpelthen dit systemur med en halv time i slutningen af ​​dagen, og klokken om morgenen skal være korrekt.

Atomisk ursynkronisering ved hjælp af WWVB

Fredag, januar 2nd, 2009

Nøjagtig tid ved brug Atomic Ure er tilgængelig i hele Nordamerika ved hjælp af WWVB Atomic Clock tid signal overført fra Fort Collins, Colorado; det giver mulighed for at synkronisere tiden på computere og andet elektrisk udstyr.

Det nordamerikanske WWVB signal drives af NIST - Statens institut for standarder og teknologi. WWVB har høj transmittereffekt (50,000 watt), en meget effektiv antenne og en ekstrem lav frekvens (60,000 Hz). Til sammenligning udsendes en typisk AM-radiostation med en frekvens på 1,000,000 Hz. Kombinationen af ​​høj effekt og lav frekvens giver radiobølgerne fra WWVB en masse spring, og denne enkelt station kan derfor dække hele kontinentale USA plus meget af Canada og Mellemamerika.

Tidskoderne sendes fra WWVB ved hjælp af et af de enkleste systemer, og med en meget lav datahastighed på en bit pr. Sekund. 60,000 Hz-signalet overføres altid, men hvert sekund reduceres det kraftigt i strøm i en periode på 0.2, 0.5 eller 0.8 sekunder: • 0.2 sekunder med reduceret effekt betyder et binært nul. • 0.5 sekunder med reduceret effekt er en binær. • 0.8 sekunder med reduceret effekt er en separator. Tidskoden sendes i BCD (Binary Coded Decimal) og angiver minutter, timer, år og år samt information om sommertid og springår.

Tiden overføres ved hjælp af 53 bits og 7 separatorer, og tager derfor 60 sekunder at transmittere. Et ur eller ur kan indeholde en ekstremt lille og relativt simpel antenne og modtager til at afkode informationen i signalet og indstille urets tid præcist. Alt du skal gøre er at indstille tidszonen, og atomuret viser den korrekte tid.

Dedikeret NTP tid servere der er indstillet til at modtage WWVB-tidssignalet er tilgængelige. Disse enheder forbinder et computernetværk som enhver anden server, der kun modtager timingsignalet og distribuerer det til andre maskiner på netværket ved hjælp af NTP (Network Time Protocol).

At holde styr på verdens tid og vanskeligheder i synkronisering

Mandag, december 29th, 2008

Indtil 1967 blev den anden defineret ved hjælp af Jordens bevægelse, der roterer en gang på sin akse hver 24 timer, og der er 3,600 sekunder i den time og 86,400 i 24.

Det ville være fint, hvis jorden var punktlig, men faktisk er det ikke. Jordens rotationshastighed ændres hver dag af tusindvis af nanosekunder, og det skyldes i vid udstrækning at vind og bølger springer rundt om Jorden og forårsager træk.

I løbet af tusindvis af dage kan disse ændringer i omdrejningshastigheden resultere i, at jordens spin bliver ude af synk med de meget præcise atomure, som vi bruger til at holde UTC-systemet (Koordineret Universal Time) tikker over. Af denne grund overvåges Jordens rotation og tidsindstillet ved hjælp af fjernlyset fra en slags sammenklappede stjerne kaldet en quasar, der blinker med en ultra præcis rytme mange millioner lysår væk. Ved at overvåge Jordens spin mod disse fjerntliggende objekter kan det udarbejdes, hvor meget rotationen er bremset.

Når et sekund af bremse er opbygget, har Den Internationale Jordrotationstjeneste (IERS) anbefaler en Leap Second at tilføjes, normalt i slutningen af ​​året.

Andre komplikationer opstår når det kommer til synkroniserings- Jorden til en timescale. I 1905 viste Albert Einsteins relativitetsteori, at der ikke er noget som absolut tid. Hvert ur, overalt i universet, krydser i en anden hastighed. For GPS er dette et enormt problem, fordi det viser sig, at klokkerne på satellitterne drev med næsten 40,000 nanosekunder om dagen i forhold til klokkerne på jorden, fordi de er høje over jordens overflade (og derfor i svagere gravitationsfelt) og bevæger sig hurtigt i forhold til jorden.

Og som lys kan rejse 40.000 fod i den tid, kan du se problemet. Einsteins ligninger, der først er skrevet ned i 1905 og 1915, bruges til at korrigere for denne tidsskifte, så GPS kan fungere, flyver til at navigere sikkert og GPS NTP-servere at modtage den korrekte tid.