Arkiver for kategorien 'NTP Basics'

Essentials of Traffic Management NTP Server

Torsdag, maj 14th, 2009

Der er nu efter sigende mange biler på vejen, da der er husholdninger, og det tager kun en kort rejse i løbet af rushtiden for at indse, at dette krav ganske vist er sandt.

Congestion er et stort problem i vores byer og kontrollerer denne trafik og holder den i bevægelse er et af de mest væsentlige aspekter ved at reducere overbelastning. Sikkerhed er også en bekymring på vores veje, da chancerne for, at alle køretøjer, der rejser rundt uden at lejlighedsvis slå hinanden, er tæt på nul, men problemet kan eksemplificeres ved dårlig trafikstyring.

Når det kommer til at styre trafikstrømmene i vores byer, er der ikke noget større våben end det ydmyge trafiklys. I nogle byer er disse enheder enkle timed lights, der stopper trafikken på en måde og tillader det den anden og omvendt.

Imidlertid er potentialet for, hvordan trafiklys kan reducere overbelastning nu realiseret, og takket være millisekundens synkronisering muliggjort med NTP-servere er nu drastisk reduceret overbelastning er nogle af verdens største byer.

I stedet for blot simple tidsbestemte segmenter af grønt, rav og rødt, kan trafiklysene svare til vejens behov, hvilket gør det muligt for flere biler i én retning, mens de reduceres i andre. De kan også bruges i forbindelse med hinanden, så grønne lyspassager til biler i hovedruter.

Dette er dog kun muligt, hvis trafiklyssystemet i hele byen synkroniseres sammen, og det kan kun opnås med a NTP tidsserver.

NTP (Network Time Protocol) er simpelthen en algoritme, der i vid udstrækning anvendes til synkronisering. EN NTP-server vil modtage et tidssignal fra en præcis kilde (normalt et atomur), og NTP-softwaren distribuerer derefter det blandt alle enheder på et netværk (i dette tilfælde trafiklys).

Det NTP-server vil løbende kontrollere tiden på hver enhed og sikre, at den svarer til tidssignalet, hvilket sikrer, at alle enheder (trafiklys) er perfekt synkroniseret sammen, så hele trafiklyssystemet kan styres som et enkelt, fleksibelt trafikstyringssystem i stedet for individuelle tilfældige lys .

Verden i perfekt synkronisering

Onsdag, maj 13th, 2009

Synkronisering er noget, vi er fortrolig med hverdagen i vores liv. Fra kørsel ned ad motorvejen til at gå overfyldt street; Vi tilpasser automatisk vores adfærd for at synkronisere med dem omkring os. Vi kører i samme retning eller går samme veje som andre pendlere, da det ikke gør det meget vanskeligere (og farligt) at undlade at gøre det.

Når det kommer til timing, er synkronisering endnu vigtigere. Selv i vores daglige tiltag forventer vi en rimelig mængde synkronisering fra mennesker. Når et møde starter på 10am, forventer vi, at alle er der inden for få minutter.

Når det kommer til computertransaktioner på tværs af et netværk, bliver nøjagtigheden i synkronisering endnu vigtigere, hvor nøjagtigheden i nogle få sekunder er for utilstrækkelig, og synkronisering til millisekunden bliver afgørende.

Computere bruger tid til hver transaktion og proces, de gør, og du skal kun tænke tilbage til furore forårsaget af årtusens bug at værdsætte vigtigheden computerens sted til tiden. Når der ikke er præcis nok synkronisering, kan der forekomme alle mulige fejl og problemer, især ved tidsfølsomme transaktioner.

Det er ikke bare transaktioner, der kan mislykkes uden tilstrækkelig synkronisering, men tidsstempler bruges i computer logfiler, så hvis noget går galt eller hvis en ondsindet bruger har invaderet (hvilket er meget nemt at gøre uden passende synkronisering), kan det tage lang tid at opdage Hvad gik galt og endnu længere for at løse problemerne.

Manglende synkronisering kan også have andre effekter som f.eks. Tab af data eller fejlagtig hentning. Det kan også lade et firma være forsvarsløst i et eventuelt juridisk argument, da et dårligt eller usynkroniseret netværk kan være umuligt at revidere.

Millisekundsynkronisering er dog ikke hovedpine, mange administratorer antager, at det kommer til at være. Mange vælger at drage fordel af mange af de online-timeservers, der er tilgængelige på internettet, men det kan medføre flere problemer, end det løser, f.eks. At lade UDP-porten være åben i firewallen (for at muliggøre timingoplysningerne) at nævne ingen garanteret nøjagtighed fra offentlig tidsserver.

En bedre og enklere løsning er at bruge en dedikeret netværkstidsserver der bruger protokollen NTP (Network Time Protocol). EN NTP tidsserver vil slutte direkte til et netværk og bruge GPS (Global Positioning System) eller specialradio transmissioner til at modtage tiden direkte fra et atomur og distribuere det blandt netværket.

Hvad er den bedste kilde til UTC-tid?

Søndag, maj 3rd, 2009

UTC (Koordineret Universal Time) er verdens globale tidsskala og erstattet den gamle tidsstandard GMT (Greenwich Meantime) i 1970s.

Mens GMT var baseret på Sun's bevægelse, er UTC baseret på den tid, der blev fortalt af atomure selv om det holdes inline med GMT ved tilføjelsen af ​​'Leap Seconds', som kompenserer for forsinkelsen af ​​jordens rotation, så både UTC og GMT kan køre side om side (GMT er ofte fejlagtigt omtalt som UTC - selvom der ikke er nogen egentlig forskel det betyder ikke rigtig noget).

I computeren giver UTC computernetværk over hele verden mulighed for at synkronisere til samme tid, der muliggør tidssensitive transaktioner fra hele verden. De fleste computernetværk bruges dedikeret netværk tidsservere at synkronisere til en UTC-tidskilde. Disse enheder bruger protokollen NTP (Network Time Protocol) til at distribuere tiden over netværket og kontrollerer løbende for at sikre, at der ikke er drift.

Det eneste problem i at bruge en dedikeret NTP tidsserver er at vælge, hvor tidskilden kommer fra hvilken vil styre typen af NTP-server du har brug for. Der er virkelig tre steder, hvor en kilde til UTC-tid nemt kan placeres.

Den første er internettet. Ved brug af en internetkilde som time.nist.gov eller time.windows.com er en dedikeret NTP-server er ikke nødvendigvis nødvendig, da de fleste operativsystemer allerede har en version af NTP installeret (i Windows skal du bare dobbeltklikke på urikonet for at se internettidsindstillingerne).

*NB Det skal bemærkes, at Microsoft, Novell og andre stærkt råder over at bruge internetkilder, hvis sikkerhed er et problem. Internet-tidskilder kan ikke autentificeres af NTP og er uden for firewallen, hvilket kan medføre sikkerhedstrusler.

Den anden metode er at bruge a GPS NTP-server; Disse enheder bruger GPS-signalet (mest almindeligt anvendt til satellitnavigering), som faktisk er en tidskode genereret af et atomur (fra ombord på satellitten). Mens dette signal er tilgængeligt overalt på kloden, kræver en GPS-antenne et klart billede af himlen, som er den eneste ulempe ved at bruge GPS.

Alternativt kan mange lande 'nationale fysik laboratorier såsom NIST i USA og NPL i Storbritannien, sende et tidssignal fra deres atomur. Disse signaler kan hentes med en radio, der refereres til NTP-server selv om disse signaler er begrænsede og sårbare for lokal forstyrrelse og topografi.

Sådan synkroniseres en computer til et atomur

Fredag, maj 1st, 2009

tidssynkronisering er ofte et meget undervurderet aspekt af computerstyring. Generelt er tidssynkronisering kun afgørende for netværk eller for computere, som tager tidssensitive transaktioner på tværs af internettet.

Tidssynkronisering med moderne operativsystemer som Windows Vista, XP eller de forskellige versioner af Linux er forholdsvis let, da de fleste indeholder tidssynkroniseringsprotokol NTP (Network Time Protocol) eller en forenklet version i det mindste (SNTP).

NTP er et algoritmebaseret program og fungerer ved at bruge en enkeltkilde, der kan distribueres blandt netværket (eller en enkelt computer) og konstant kontrolleres for at sikre, at netværkets ure kører nøjagtigt.

For brugere af enkeltcomputere eller netværk, hvor sikkerhed og præcision ikke er primære bekymringer (selvom netværkssikkerhed bør være et hovedproblem), er den enkleste metode til at synkronisere en computer at bruge en internettidstandard.

Med et Windows-operativsystem kan dette nemt gøres på en enkelt computer ved at dobbeltklikke på urikonet og derefter konfigurere fanen Internet-tid. Det skal imidlertid bemærkes, at ved brug af en internetbaseret tidskilde som nist.gov eller windows.time skal en port være åben i brandwallen, som kunne udnyttes af ondsindede brugere.

For netværksbrugere og dem, der ikke ønsker at forlade sårbarheder i deres firewall, er den mest egnede løsning at bruge en dedikeret netværkstidsserver. De fleste af disse enheder bruger også protokollen NTP, men da de modtager en tidsreference eksternt til netværket (normalt ved hjælp af GPS eller langbølgeradio), forlades ingen sårbarheder i firewallen.

Disse NTP-server enheder er også langt mere pålidelige og præcise end internetkilder, da de kommunikerer direkte med signalet fra en atomur snarere end at være flere niveauer (i NTP-betegnelser kendt som lag) fra referenceklokken som de fleste internetkilder er.

GPS Time Server og dens nøjagtighed fra rummet

Tirsdag, April 28th, 2009

GPS-netværket (Global Positioning System) er almindeligvis kendt som et satellitnavigationssystem. Det relæer imidlertid et ultra-præcis tidssignal fra et ombord atomur.

Det er disse oplysninger, der modtages af satellitnavigationsanordninger, der så kan triangulere modtagerens position ved at beregne, hvor længe signalet er taget for at komme fra forskellige satellitter.

Disse tidssignaler, som alle radiotransmissioner, bevæger sig ved lysets hastighed (som er tæt på 300,000 km et sekund). Det er derfor meget vigtigt, at disse enheder ikke kun er nøjagtige til et sekund, men til en milliontedel af et sekund ellers ville navigationssystemet være ubrugeligt.

Det er denne timing information, der kan udnyttes af en GPS tidsserver som en base for netværkstid. Selv om denne timing information ikke er i et UTC-format (Koordineret Universal Time), er verdens globale tidsskala nemt konverteret på grund af sin oprindelse fra et atomur.

A GPS tidsserver kan modtage signalet fra en GPS-antenne, selvom dette behøver at have et godt overblik over himlen, da satellitterne relæer deres transmissioner via synsvinkel.
Brug af en dedikeret GPS tidsserver et computernetværk kan synkroniseres til inden for få millisekunder af NTP (milli = 1000th af et sekund) og give sikkerhed og godkendelse.

Efter den stigende brug af GPS-teknologi i de sidste par år er GPS-tidsservere nu relativt billige og er enkle og ligefrem systemer til at installere.

Galileo og GPS NTP Server

Torsdag, April 23rd, 2009

I øjeblikket er der kun ét Global Navigation Satellite System (GNSS) NAVSTAR GPS, som har været åben til civil brug siden den sene 1980.

Mest almindeligt, den GPS-system menes at give navigationsoplysninger, der gør det muligt for chauffører, søfolk og piloter at finde deres position overalt i verden.

Faktisk er den eneste information, der stråles fra en GPS-satellit, den tid, der genereres af satellittets interne atomur. Dette tidssignal er så præcist, at en GPS-modtager kan bruge signalet fra tre satellitter og lokalisere placeringen til inden for få meter ved at finde ud af, hvor længe hvert præcist signal tog for at ankomme.

I øjeblikket a GPS NTP-server kan bruge denne timing information til at synkronisere hele computernetværk for at give nøjagtighed inden for få millisekunder.

EU arbejder imidlertid for øjeblikket på Europas eget globale satellitnavigationssystem kaldet Galileo, som vil konkurrere med GPS-netværket ved at levere sine egne timing og positioneringsoplysninger.

Galileo er imidlertid designet til at være interoperabel med GPS, hvilket betyder at en nuværende GPS NTP-server vil kunne modtage begge signaler, selv om nogle softwarejusteringer måtte foretages.

Denne interoperabilitet vil give øget nøjagtighed og kan gøre nationale tids- og frekvensradioudsendelser forældede, da de ikke vil være i stand til at producere en sammenlignelig nøjagtighed.

Desuden planlægger Rusland, Kina og Indien i øjeblikket deres egne GNSS-systemer, som kan give endnu mere nøjagtighed. GPS har allerede revolutioneret måden verden virker ikke blot ved at tillade præcis positionering, men også gøre det muligt for hele kloden at synkronisere til samme tidsskala ved hjælp af en GPS NTP-server. Det forventes, at endnu flere fremskridt inden for teknologi fremkommer, når den næste generation af GNSS begynder deres transmissioner.

Atomic Clocks Forklaret

Mandag, April 20th, 2009

Er et atomklok radioaktivt?

An atomur holder tid bedre end noget andet ur. De holder endda tid bedre end Jordens rotation og stjernens bevægelse. Uden atomuret ville GPS-navigering være umuligt, Internettet ville ikke synkronisere, og planets placering ville ikke være kendt med tilstrækkelig nøjagtighed for rumprober og landingsledere, der blev lanceret og overvåget.

Et atomur er ikke radioaktivt, det er ikke afhængigt af atomnedbrydning. En atomur har snarere en oscillerende masse og en fjeder, ligesom almindelige ure.

Den store forskel mellem et standardur i dit hjem og et atomur er, at oscillationen i et atomur er mellem kernen i et atom og de omgivende elektroner. Denne svingning er ikke ligefrem parallel med balancehjulet og hårspringet af et urværksklip, men faktum er, at begge benytter svingninger for at holde styr på tiden. Oscillationsfrekvenserne inden for atomet bestemmes af kernens masse og tyngdekraften og den elektrostatiske "fjeder" mellem den positive ladning på kernen og den elektroniske sky, der omgiver den.

Hvad er typer af Atomic Clock?

I dag, selvom der findes forskellige typer af atomur, forbliver princippet bag dem alle de samme. Den største forskel er forbundet med det anvendte element og midlerne til at detektere, når energiniveauet ændres. De forskellige typer af atomur omfatter:

Cesium-atomuret anvender en stråle af cæsiumatomer. Uret adskiller cæsiumatomer af forskellige energiniveauer ved magnetfelt.

Hydrogen atomuret opretholder hydrogenatomer på det krævede energiniveau i en beholder med vægge af et specielt materiale, så atomer ikke mister deres højere energitilstand for hurtigt.

Rubidium atomuret, den enkleste og mest kompakte af alle, bruger en glascelle af rubidiumgas, der ændrer lysoptagelsen ved den optiske rubidiumfrekvens, når den omgivende mikrobølgefrekvens er helt korrekt.

Det mest nøjagtige kommercielle atomur til rådighed i dag anvender cæsiumatomet og de normale magnetfelter og detektorer. Desuden stoppes cæsiumatomer fra at zippe frem og tilbage af laserstråler, hvilket reducerer små ændringer i frekvensen på grund af Doppler-effekten.

Hvornår var Atomic Clock opfundet? atomur

I 1945 foreslog Columbia Universitets fysikprofessor Isidor Rabi at et ur kunne laves af en teknik, han udviklede i 1930'erne kaldet atomstrålemagnetisk resonans. Ved 1949, National Bureau of Standards (NBS, nu National Institute of Standards and Technology, NIST) annoncerede verdens første atomur ved hjælp af ammoniakmolekylet som kilde til vibrationer, og ved 1952 annoncerede den det første atomur med cæsiumatomer som vibrationskilde, NBS-1.

I 1955, National Physical Laboratory (NPL) i England byggede den første cesium-stråle atomur anvendt som kalibreringskilde. I løbet af det næste årti blev der skabt mere avancerede former for atomurerne. I 1967 definerede 13th General Conference on Weights and Measures SI sekunden på basis af vibrationer af cæsiumatomet; Verdens tidskrævende system havde ikke længere et astronomisk grundlag på det tidspunkt! NBS-4, verdens mest stabile cæsiumklok, blev afsluttet i 1968, og blev brugt i 1990'erne som en del af NPL-tidssystemet.

I 1999 begyndte NPL-F1 at fungere med en usikkerhed om 1.7-dele i 10 til 15th power eller nøjagtighed i omkring et sekund i 20 million år, hvilket gør det til det mest præcise atomur nogensinde lavet (en sondring delt med en lignende standard i Paris).

Hvordan er Atomic Clock Time Measured?

Den korrekte frekvens for den specifikke cæsiumresonans defineres nu ved international aftale som 9,192,631,770 Hz, så når det er divideret med dette tal, er outputet nøjagtigt 1 Hz eller 1-cyklus pr. Sekund.

Den langsigtede nøjagtighed, der opnås ved moderne cæsiumatomsklokke (den mest almindelige type), er bedre end et sekund pr. En million år. Hydrogen atomuret viser en bedre kortvarig (en uge) nøjagtighed, ca. 10 gange nøjagtigheden af ​​et cæsiumklocke. Derfor har atomuret øget nøjagtigheden af ​​tidsmåling omkring en million gange i sammenligning med målingerne udført ved hjælp af astronomiske teknikker.

Synkronisering til et atomur

Den enkleste måde at synkronisere med et atomur på er at bruge a dedikeret NTP-server. Disse enheder modtager enten det GPS-ataomiske ursignal eller radiobølger fra steder som NIST eller NPL.

Typer af Atomic Clock Receivere

Lørdag April 18th, 2009

MSF atomur modtager

Det styrende radiosignal til National Physical LaboratoryAtomuret overføres på MSF 60kHz signalet via senderen på CumbriaAnthorn, der drives af British Telecom. Dette radio atomur tid signal skal have en række af nogle 1,500 km eller 937.5 miles. Alle de britiske øer er naturligvis inden for denne radius.
Det Nationale Fysiske Laboratoriums rolle som målmand for de nationale tidsstandarder er at sikre, at den britiske tidsplan er i overensstemmelse med den koordinerede universelle tid (UTC) til det højeste niveau af nøjagtighed og for at gøre den tid tilgængelig i hele Storbritannien. MSF (MSF er det tre bogstavs kaldesignal for at identificere signalets kilde) radio-udsendelse giver tidssignalet til elektronisk handel med elektronisk handel, ure på de fleste banegårde og for BTs taleklokke.

DCF atomur receiver

Det styrende radiosignal for det tyske ur sendes via langbølge fra DCF 77kHz-senderen i Mainflinger, nær Dieburg, nogle 25 km syd øst for Frankfurt - senderen af ​​tyske nationale tidsstandarder. Det er ligner i drift til Cumbria transmitteren, men der er to antenner (radio master), så radioens atomur tid signal kan opretholdes til enhver tid.

Langbølge er den foretrukne radiofrekvens til overførsel af radio atomklok tidskode binære signaler, da den udfører mest konsekvent i den stabile nederste del af ionosfæren. Dette skyldes, at det lange bølgesignal, der bærer tidskoden til dit timepiece, bevæger sig på to måder; direkte og indirekte. Mellem 700 km (437.5 miles) til 900 km (562.5 miles) af hver sender kan bærebølgen bevæge sig direkte til uret. Radiosignalet når også timepunktet ved at blive skubbet ud af ionosfærens underside. I løbet af dagslyset er en del af ionosfæren kaldet "D-laget" på en højde af nogle 70 km (43.75 miles) ansvarlig for afspejling af langbølges radiosignalet. I løbet af mørketiden, når solens stråling ikke virker udefra atmosfæren, stiger dette lag til en højde af nogle 90 km (56.25 miles), der bliver E-laget i processen. Enkel trigonometri vil vise, at signaler, der reflekteres, vil rejse videre.

En stor del af EU-området dækkes af denne transmitter, der letter modtagelse for dem, der rejser bredt i Europa. Det tyske ur er indstillet på den centraleuropæiske tid - en time før britisk tid. Efter en mellemstatslig afgørelse fra 22nd oktober 1995 vil britisk tid altid være 1 time mindre end europæisk tid med både Det Forenede Kongerige og det europæiske fastland og retardering af ure på samme "tid".

WVVB atom clock modtager

Et radio atomur system er tilgængeligt i Nordamerika oprettet og drives af NIST - National Institute of Standards and Technology, der ligger i Fort Collins, Colorado.

WWVB har høj transmittereffekt (50,000 watt), en meget effektiv antenne og en ekstrem lav frekvens (60,000 Hz). Til sammenligning udsendes en typisk AM-radiostation med en frekvens på 1,000,000 Hz. Kombinationen af ​​høj effekt og lav frekvens giver radiobølgerne fra MSF en masse spring, og denne enkelt station kan derfor dække hele kontinentale USA plus meget af Canada og Mellemamerika.

Det radio atomur Tidskoder sendes fra WWVB ved hjælp af et af de enkleste systemer, og ved en meget lav datahastighed på en bit pr. sekund. 60,000 Hz-signalet overføres altid, men hvert sekund reduceres det betydeligt i strøm i en periode på 0.2, 0.5 eller 0.8 sekunder:

• 0.2 sekunder med reduceret effekt betyder en binær nul • 0.5 sekunder med reduceret effekt er en binær en. • 0.8 sekunder med reduceret effekt er en separator.

Tidskoden sendes i BCD (Binary Coded Decimal) og angiver minutter, timer, år og år samt information om sommertid og springår. Tiden overføres ved hjælp af 53 bits og 7 separatorer, og tager derfor 60 sekunder at transmittere.

Et ur eller ur kan indeholde en ekstremt lille og relativt enkel radio atomurant antenne og modtager til at afkode informationen i signalet og indstille atomuret tid præcist. Alt du skal gøre er at indstille tidszonen, og atomuret viser den korrekte tid.

Funktioner af Network Time Protocol

Torsdag, april 16th, 2009

NTP er afhængig af et referenceur og alle ure på NTP netværk er synkroniseret til den tid. Det er derfor afgørende, at referenceuret er så præcist som muligt. De mest præcise ure er atomur. Disse store fysik lab-enheder kan opretholde nøjagtig tid over millioner af år uden at tabe et sekund.

An NTP-server vil modtage tiden fra et atomur enten fra internettet, GPS-netværket eller radiotransmissionerne. Ved brug af et atomur som reference vil et NTP-netværk være nøjagtigt til inden for få millisekunder af verdens globale tidsskala UTC (Koordineret universeltid).

NTP er et hierarkisk system. Jo tættere en enhed er på referencet, jo højere er det på NTP-strata. Et atomur ur referenceur er en stratum 0 enhed og a NTP-server der modtager tiden fra den er en stratum 1 enhed, klienter af NTP serveren er stratum 2 enheder og så videre.

På grund af dette hierarkiske system kan enheder, der ligger ned ad strata, også bruges som en reference, der gør det muligt for store netværk at fungere, mens de er forbundet med kun en NTP tidsserver.

NTP er en protokol, der er fejltolerant. NTP ser ud til fejl og kan behandle flere tidskilder, og protokollen vælger automatisk det bedste. Selv når et referenceur er midlertidigt utilgængeligt, kan NTP bruge tidligere målinger til at estimere den aktuelle tid ..

Finde tiden

Tirsdag, April 14th, 2009

At finde ud af, hvad tiden er, er noget, vi alle tager for givet. Ure er overalt og et blik på et armbåndsur, uretårn, computerskærm eller endda en mikrobølgeovn fortæller os, hvad tiden er. Men det har ikke altid været så let at fortælle tiden.

Ure ankom ikke til middelalderen, og deres nøjagtighed var utroligt dårlig. Den rigtige tid til at fortælle præcisionen ankom først efter ankomsten af ​​det elektroniske ur i det nittende århundrede. Men mange af de moderne teknologier og applikationer, som vi tager for givet i den moderne verden, såsom satellitnavigering, flyvekontrol og internethandel kræver en præcision og nøjagtighed, som langt overstiger et elektronisk ur.

Atomiske ure er langt de mest nøjagtige tidsprogende enheder. De er så præcise, at verdens globale tidsplan, der er baseret på dem (Koordineret Universal Time) skal indimellem justeres for at tage højde for nedbringelsen af ​​jordens rotation. Disse justeringer tager form af yderligere sekunder kendt som spring sekunder.

Atomklockens nøjagtighed er så præcis, at ikke engang et sekund går tabt i over en million år, mens en elektronisk ur til sammenligning vil tabe et sekund om en uge.

Men er denne nøjagtighed virkelig nødvendig? Når man ser på teknologier som global positionering, så er svaret ja. Satellitnavigationssystemer som GPS-arbejde ved at triangulere tidssignaler genereret af atomur ombord på satellitterne. Da disse signaler transmitteres ved lysets hastighed, rejser de næsten 100,000 km hvert sekund. Enhver unøjagtighed i uret med endnu en tusindedel af et sekund kunne se positioneringsoplysningerne ud af miles.

Computer netværk, der skal kommunikere med hinanden over hele kloden, skal sikre, at de kører ikke bare præcis tid, men også er synkroniseret med hinanden. Alle transaktioner, der udføres på netværk uden synkronisering, kan resultere i alle mulige fejl.

Fort hans grund computernetværk bruger NTP (Network Time Protocol) og netværk tidsservere ofte omtalt som en NTP-server. Disse enheder modtager et tidssignal fra et atomur og distribuerer det blandt et netværk, således at et netværk sikres, at det er så præcist og præcist som muligt.